Osmium Tetrafluoride Dioxide, OsF4O2: a New Osmium(viii) Oxide Fluoride

Karl O. Christe* and Roland Bougon b

^a Rocketdyne, A Division of Rockwell International Corporation, Canoga Park, California 91303, USA ^b SCM-URA CNRS 331, CEA—Centre d'Etudes Nucléaires de Saclay, 91191 Gif-sur-Yvette, France

The reaction of OsO_4 with KrF₂ in anhydrous HF produces *cis*-OsF₄O₂ and not OsF₆O as previously reported.

Of the three possible mononuclear oxide fluorides of osmium in its +vIII oxidation state, OsF_6O , OsF_4O_2 and OsF_2O_3 , only the latter had been well known and characterized.^{1–3} Attempts to prepare the other two oxide fluorides had not only failed, but also suggested that such compounds will disproportionate readily.^{2,4,5} Very recently, a new osmium(VIII) oxide fluoride was prepared at Saclay and identified as OsF_6O by elemental analysis, X-ray powder data and vibrational spectroscopy.⁶

During an ongoing effort at Rocketdyne on highly coordinated, high oxidation state compounds, including several XF₆O type ions,⁷ a poor agreement between the vibrational spectra of the alleged OsF₆O and the other XF₆O ions was noticed, and the Saclay experiments were repeated at Rocketdyne. The following results establish that the new osmium-(VIII) oxide fluoride, discovered at Saclay, is not OsF₆O but *cis*-OsF₄O₂. Further characterization of the material carried out independently at Saclay also led to this conclusion.

The synthesis of the new osmium(VIII) oxide fluoride was carried out from OsO_4 and an excess of KrF_2 in anhydrous HF solution, as previously described.⁶ A careful separation, measurement and identification of all reactants and reaction products by both pressure–volume–temperature measurements for the volatile species and weights for all of them established the following quantitative 1:2 reaction (1). The excess of KrF_2 used was recovered unchanged.

$$OsO_4 + 2KrF_2 \rightarrow OsF_4O_2 + 2Kr + O_2$$
(1)

The physical properties of the osmium oxide fluoride prepared in this manner (burgundy-red solid, m.p. 90 °C, vapour pressure ~ 1 Torr at room temperature), its X-ray powder diffraction pattern and vibrational spectra were within

experimental error identical to those previously reported⁶ and leave no doubt that the two compounds are the same.⁺

One of the authors (K. O. C.) thanks the US Air Force Phillips Laboratory and the US Army Research Office for financial support.

Received, 1st May 1992; Com. 2/02263J

References

- 1 M. A. Hepworth and P. L. Robinson, *J. Inorg. Nucl. Chem.*, 1957, **4**, 24.
- 2 Nguyen-Nghi and N. Bartlett, C. R. Acad. Sci. Paris Sec. C, 1969, 269, 756.
- 3 E. G. Hope, W. Levason and J. S. Ogden, J. Chem. Soc., Dalton Trans., 1988, 61 and 997.
- 4 W. E. Falconer, F. J. Dissalvo, J. E. Griffiths, F. A. Stevie, W. A. Sunder and M. J. Vasile, *J. Fluorine Chem.*, 1975, **6**, 499.
- 5 J. H. Holloway and D. Laycock, Adv. Inorg. Chem. Radiochem., 1984, 28, 85.
- 6 R. Bougon, J. Fluorine Chem., 1991, 53, 419.
- ⁷ K. O. Christe, J. C. P. Sanders, G. J. Schrobilgen and W. W. Wilson, J. Chem. Soc., Chem. Commun., 1991, 837.
- 8 K. O. Christe, R. D. Wilson and C. J. Schack, *Inorg. Chem.*, 1985, 20, 2104.

[†] Vibrational spectra: The IR and Raman spectra of the solid and the Raman spectrum of an HF solution were recorded. The general pattern of these spectra resembles that⁸ of *cis*-IF₄O₂⁻ more closely than those⁷ of IF₆O⁻ and TeF₆O²⁻. Furthermore, two Raman bands at 942 and 932 cm⁻¹ are observed for the solid in the Os=O stretching region that had previously been interpreted⁶ as being due to a crystal field splitting of an Os=O group containing a single oxygen atom. The present study, however, shows that in HF solution this splitting is retained and suggests the presence of more than one oxygen atom in the molecule.

¹⁹F NMR spectrum: The ¹⁹F NMR spectrum of the new osmium oxide fluoride in HF solution was recorded and exhibits an A_2B_2 pattern, *i.e.* two almost identical 1:2:1 triplets at δ 61.3 and 14.7 downfield from external CFCl₃ with $J_{\rm FF}$ 136 Hz. No other signals were observed. This clearly establishes that the new osmium oxide fluoride contains only four and not five fluorine atoms and must be OsF₄O₂ and not OsF₆O. Furthermore, the observation of two nonequivalent sets of two fluorine atoms each shows that the OsF₄O₂ is present exclusively as the *cis*- and not as the *trans*-isomer. For *trans*-OsF₄O₂, only a single resonance should be observed with no signs of splittings due to F–F coupling.